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1. Introduction

Let K(n , d) denote the minimal k for which there exist ±1 vectors v 1 , . . . , v k of

length n such that for any ±1 vector w of length n, there is an i, 1 ≤ i ≤ k, such that

v i
. w ≤ d, where v . w denotes the usual inner product of two vectors. Since

v . w ≡ n (mod 2) for any two ±1 vectors v and w of length n, K(n , 0 ) is defined only

for even n, while K(n , d) for d ≥ 1 is well-defined for all n. A very simple and

surprising construction of Knuth [9] shows that K(n , 0 ) ≤ n for even n. The main result

of this note is that for n even, K(n , 0 ) = n. More generally, Knuth’s construction shows

that K(n , d) ≤ lcn /(d + 1 ) rc for n ≡ d (mod 2), and we show that this construction is

best possible.

The reason Knuth’s result is surprising is that it might appear that if one tries to select

±1 vectors v 1 , . . . , v n so as to minimize



- 2 -

w
max

1≤ i≤n
min v i

. w (1.1)

(where the maximum is over all ±1 vectors w of length n), then the best choice to make is

to take the v i to be pairwise orthogonal; i.e., as the rows of a Hadamard matrix of order

n. Hadamard matrices are conjectured to exist for n = 1 , 2, and all those n divisible by

4, but this is not known to be true in general [8]. When the v i are chosen as the rows of a

Hadamard matrix, it is easy to show that the maximum in (1.1) is ≤n 1/2 .

In many cases this bound is not best possible (for one thing, n 1/2 is usually not an

integer, and one can even show that some Hadamard matrices give bounds for (1.1) that

are smaller than the largest integer ≤n 1/2 that is ≡ n (mod 2)). However, for Sylvester

matrices of order n = 4m [8] it can be shown that the n 1/2 bound is tight, since they have

a ±1 eigenvector.

Our upper bound for K(n , d) is obtained from a simple modification of Knuth’s

construction [9] which shows K(n , 0 ) ≤ n for n even. It is so simple that we present it

in the introduction.

Theorem 1. If n > 0, d ≥ 0, n ≡ d (mod 2), then

K(n , d) ≤


 d + 1

n_ ____




, (1.2)

where x is the least integer ≥x.

Proof. We first consider d = 0, n ≡ 0 (mod 2). Consider the following n + 1 by n

matrix
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(1.3)

and let v i , 1 ≤ i ≤ n + 1, denote the vector that forms the i-th row of (1.3). We claim

that for any ±1 vector w of length n, w . v i = 0 for some i ≤ n. To see this, note that

w . v 1 = − w . v n + 1 , while w . v i = w . v i + 1 ±2 for each i ≤ n, so, since

w . v i ≡ 0 (mod 2) for all i, there is at least one i ≤ n such that w . v i = 0 (this is

something like a discrete mean value theorem). If w . v n + 1 = 0, then also w . v 1 = 0,

which establishes our claim that w . v i = 0 for some i ≤ n. This completes the proof

that K(n , 0 ) ≤ n for n ≡ 0 (mod 2).

The bounds for the other K(n , d) are obtained by selecting the vectors v 1 , v d + 2 ,

v 2d + 3 , . . . , v r(d + 1 ) + 1 , where r = n /(d + 1 ) − 1. Since for any ±1 vector w and

any j , 0 ≤ i < r,

w . v j(d + 1 ) + 1 − w . v ( j + 1 ) (d + 1 ) + 1 ≤ 2d + 2 ,

an argument similar to the one above shows that w . v j(d + 1 ) + 1 ≤ d for at least one

j , 0 ≤ j ≤ r.

Our main result is a proof, given in Section 2, that the construction of Theorem 1 is

optimal.

Theorem 2. If n > 0, d ≥ 0, n ≡ d (mod 2), then
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K(n , d) ≥ lc
d + 1

n_ _____rc , (1.4)

so that K(n , d) = lcn /(d + 1 ) rc.

The proof we give uses only elementary linear algebra, and is similar to the proof

used in Appendix of [1]. Another, but still related, proof can be given using

commutation algebra and Hilberts’ Nullstellinsatz [7].

The proof of Theorem 2 can be used to prove the following mass general result.

Theorem 3. Suppose n > 0, and let D be an arbitrary set of integers, where each d ∈ D

satisfies n ≡ d (mod 2). Let V be a set of ±1 vectors of length n, such that for every ±1

vector u of length n, there is a v ∈ V with u .v ∈ D. Then

V ≥ n /D . (1.5)

Theorem 2 is the special case of this theorem, where D = {0 , ±2 , ±4 , . . . , ±d }, as

D = {±1 , ±3 , . . . , ±d }. In general, (1.5) can be very far from best possible. It would

be interesting to find the best possible bound for various sets D.

It is possible to generalize the problem considered here and consider balancing

families of vectors whose components are ±1, ± i, or more generally, with roots of unity

for some fixed r. Some preliminary results in this direction have been obtained by the

last two authors and P. Shor.

Our balancing vector problem can be rephrased in terms of an extremal problem for

subsets of a set, with a ± 1 vector (u 1 , . . . , u n ) of length n corresponding to a subset A

of {1 , . . . , n }, with j ε A if and only if u j = 1. F. Galvin recently posed a problem in

this setting that is similar to ours. He asked for the determination of the minimal integer
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m = m(n) such that there exist subsets A 1 , . . . , A m of {1 , . . . , 4n }, each of size 2n,

such that for any subset B ⊆ {1 , . . . , 4n } with 2n elements there is at least one i,

1 ≤ i ≤ m, with A i ∩ B having n elements. Frankl and Ro
. .
dl [5] have noticed that if one

defines A i = { i , i + 1 , . . . , i + 2n − 1} for 1 ≤ i ≤ 2n, then it is easy to see that these

A i have the right property, and so m ≤ 2n. Frankl and Ro
. .
dl proved that m > ε n for

some fixed ε > 0. They conjectured initially that m = 2n, but this was shown to be

false by Markert and West (unpublished), who found using Madamard matrices that

m( 2 ) ≤ 3 and m( 4 ) ≤ 7. On the other hand, the recent proof [4] of Itos’ conjecture

(that every linear subspace of dimension 2n + 1 of the space GF( 2 )4n has a vector of

Manning weight exactly 2n) leads to a proof that m(n) = 2n for n odd. Although the

Galvin problem is somewhat similar to that of determining K( 2n , 0 ), there does not

seem to be any simple dependence between them.

A still different conjecture that is related to the determination of K( 2n , 0 ) is due to

S. Poljak (unpublished). It states that if G is the graph with vertices equal to the 2n

binary vectors of length n, and edges between vertices that are at Hamming distance 1,

then the minimal number of hyperplanes that cut each edge is exactly n. It is easy to see

that n hyperplanes can be found that cut each edge, but that ≥ n hyperplanes as changes

needed has only been shown for a few values of n by Z. Fu
. .
redi and S. Poljak.

Our research on balancing sets of vectors was motivated by a problem in optical data

communication which also arises in other communication areas. This problem is

described in Section 3.
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2. Proof of Theorem 2

Put N = {1 , 2 , . . . , n }, and let U be the set of all ±1 vectors of length n. A vector

u ∈ U is even if it has an even number of –1’s, otherwise it is odd.

Lemma 2.1. Let P(y) = P(y 1 , y 2 , . . . , y n ) be a multilinear polynomial of degree less

than n /2 over the reals, i.e., P = Σ



α X

.
i∈X
Π y i : X ⊂ N , X < n /2





where

α X ∈ R. If P(y) = 0 for every even vector y ∈ U than P ≡ 0 (i.e., α X = 0 for all X).

Similarly, if P(y) = ‘0 for every odd vector y ∈ U, then P ≡ 0.

Proof. We can prove the even case. (The odd case is analogous.) By the hypotheses, for

every even subset Y ⊂ N we have

Σ



α X ( − 1 )Y∩X : X ⊂ N , X < n /2





= 0 .

It thus suffices to check that the columns of the matrix

A = ‘(α Y ,X ) = ( ( − 1 )Y∩X ) Y ⊂ N , Yeven ; X ⊂ N , X < n /2

are linearly independent (over the reals). One can easily check that

(A TA) X 1 , X 2
= Σ




( − 1 )Y∩X 1 + Y∩Y 2 : Y ⊂ N , Y even





= Σ



( − 1 )Y∩(X 1 ⊕X 2 ) : Y ⊂ N , Y even





.

The last sum is 2n − 1 for X 1 = X 2 . For X 1 ≠ X 2 , since X 1 ⊕ X 2 ≠ N, ∅ this sum is
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Σ



( − 1 )A 2n −X 1 ⊕X 2− 1 : A ⊂ X 1 ⊕ X 2





= ‘0 .

We conclude that A TA is nonsingular and hence that A has full column rank. This

completes the proof of the lemma.

We can now prove Theorem 2. For simplicity we consider the case n ≡ 0 (mod 4)

and d ≡ 0 (mod 4). (The proofs for the other cases are analogous.) Let V ⊂ U be a set

of vectors such that for every u ∈ U there is a v ∈ V with v . u ≤ d. We must show

that V ≥ n /(d + 1 ). Let V 0 be the set of all even vectors of V and let V 1 be the set of

all odd vectors of V.

Consider the following polynomial in y = (y 1 , y 2 , . . . , y n );

P(y) =
v∈V 0

Π (v . y)
v∈V 1

Π ( 22 − (v . y)2 )
v∈V 0

Π ( 42 − (v . y)2 ) . . . . .
v∈V 0

Π (d 2 − (v . y)2 ) .

Since n ≡ 0 (mod 4), (v 1
. v 2 ) ≡ 0 (mod 2) for all v 1 , v 2 ∈ U. Also, as is easily

checked, for every v 1 , v 2 ∈ U, (v 1
. v 2 ) ≡ 0 (mod 4) if and only if both v 1 and v 2 are

even or both are odd. Otherwise, (v 1
. v 2 ) ≡ 2 (mod 4). By assumption, for every even

vector y = (y 1 , . . . , y n ) ∈ U there is a v ∈ V with v . y ≤ d, i.e.,

v . y ∈ {0 , ±2 , ±4 , . . . , ±d }. Since v . y can be in {0 , ±4 , . . . , ±d } only if v is

even, and can be in {±2 , ±6 , . . . , ±(d − 2 ) } only if v is odd, we conclude that for every

even y ∈ U, P(y) = 0.

Let P
_ _

(y) be the multilinear polynomial obtained from P(y) by replacing repeatedly

each occurrence of yi
2 in the standard representation of P as a sum of monomials by 1.

Clearly P
_ _

(y) = P(y) for all y ∈ U, and deg P
_ _

≤ deg P. Since P
_ _

(y) = 0 for every
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even y ∈ U and P
_ _

= / 0, (since P
_ _

(y) ≠ 0 for every odd y ∈ U), we conclude, by Lemma

2.1, that deg P ≥ deg P
_ _

≥ n /2. Therefore

deg P = V 0 +
2
d_ _ (V 0 + V 1) ≥ n /2 . (2.1)

We now repeat the above process for odd vectors y ∈ U. Define

G(y) =
v∈V 1

Π (v . y)
v∈V 0

Π ( 22 − (v . y)2 ) . . . . .
v∈V 1

Π (d 2 − (v . y)2 ) .

Observe, as before, that G(y) = 0 for every odd y ∈ U and G(y) ≠ 0 for every even

y ∈ U. This implies, as before, that

V 1 +
2
d_ _ (V 0 + V 1) ≥ n /2 . (2.2)

The summation of (2.1) and (2.2) implies that (d + 1 ) V ≥ n and completes the proof

of Theorem 1.1.

Remarks: Another proof of Theorem 2 can be given using the fact that the polynomial

P(y) vanishes on the zero set of the ideal generated by

y1
2 − 1 , . . . , yn

2 − 1 , y 1 y 2 , . . . , y n − 1. Hilbert’s Nullstellinsatz can then be used to

show that P vanishes identically.

3. Applications

The problem which motivated the research reported in this note arose in optical data

communications, and is similar to the problem that motivated Knuth’s investigation [9].

We will regard the basic signal bits used in an optical channel as ±1’s. In many

applications, such as data links, where the data rates are very high but the electronics
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have to be simple to be economical, it is desirable to encode information so that the

transmitted stream will have a low d.c. component; i.e., in any long block, there will be

about as many + 1’s as − 1’s. For other problems and solutions in the design of simple

balanced signal sets, see [2, 3, 6, 10, 11].

It is possible to encode each − 1 as ( + 1 − 1 ) and each + 1 as ( − 1 + 1 ), but this code

(called Manchester code) has information rate of 1 /2 and so is very inefficient. A more

efficient method is to take blocks of m bits and encode them in blocks of n = m + k

bits, which have exactly as many + 1’s as − 1’s. For example, since 217 = 131 , 072 and


10
20

 = 184 , 756, we could take m = 17 and n = 20. Similarly, since

233 = 8 , 589 , 934 , 592 while 
18
36

 = 9 , 075 , 135 , 300, we could take m = 33 and

n = 36. However, no way is known to efficiently encode or decode information using

these codes [12]. The best algorithm for assigning a unique integer between 1 and 
 r
2r



to each subset of size r of a set of size 2r takes either on the order of r operations on

integers of about r bits when about r 2 stored r-bit values are available, or about r 2

operations when about r stored values are available. Thus this scheme would probably be

practical only for very small values of m and n, where direct memory lookup is feasible,

for example for m = 6 and n = 8.

Proposals have been made to use scramblers to transform the data stream into a more

random-looking sequence which will therefore have a small average d.c. component.

Scramblers using a linear feedback shift register can be implemented very efficiently.

However, there are data patterns for which scramblers will fail, and in data

communications, where long repetitions of a particular data sequence are fairly common,
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it seems reasonable to try to protect against even such pathological cases.

Knuth’s and our proposed solution to the d.c. component problem is to use balancing

sets of vectors. In the very simplest case, corresponding to the construction for

R(m , m /2 ), we could take blocks of m data bits x 1
. . . x m and encode them into

n = m + 1 bits y 1
. . . y n as follows: If  Σ x i ≤ m /2, then y i = x i for 1 ≤ i ≤ m and

y n = 1, while if  Σ x i > m /2, then y i = − x i for 1 ≤ i ≤ m /2 , y i = x i for

m /2 < i ≤ m, and y n = − 1. It then follows that  Σ y i ≤ (n + 1 )/2, so the d.c.

component is substantially decreased. At the other extreme, we can use (for m even) the

construction that achieves R(m , 0 ). In this case the data block (x 1 , . . . , x m ) would be

encoded as (x 1 v i1 , . . . , x m v im , z 1 , . . . , z k ), where (v i1 , . . . , v im ) is the vector

from (1.3) that’s orthogonal to (x 1 , . . . , x m ), and z 1 , . . . , z k are ±1’s indicating the

value of i. Since we need to distinguish only between m different values of i, we can use

k on the order of log 2 n, even if we select the z i so that z 1 + . . . + z k = 0 in order

for each transmitted block to have zero d.c. component. (For m ≤ 924, for example, we

could take k = 12, as 
 6
12

 = 924, so that encoding and decoding could be implemented

by easy table lookup, with addresses at most 12 bits wide.) Some other modifications of

the basic scheme are discussed in [9]. If the d.c. component does not have to be zero, we

could use some of the other schemes derived in Theorem 1 to obtain bounds for K(m , d).

The balancing vector scheme has the advantage that it can be implemented with very

simple electronics even for large block lengths, which leads to a high information rate.

Furthermore, by making small adjustments in the basic scheme, it is possible to achieve

additional desirable properties, such as a guaranteed number of internal transitions (i.e.,



- 11 -

differences between neighboring bits) inside each transmitted block to aid in clock

synchronization.
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ABSTRACT

For n > 0, d ≥ 0, n ≡ d( mod 2 ), let K(n , d) denote the minimal cardinality of a

family V of ±1 vectors of length n, such that for any ±1 vector u of length n there is a

v ∈ V such that  v . u  ≤ d, where v . u is the usual scalar product of v and u. A

generalization of a very simple construction due to Knuth shows that

K(n , d) ≤ lcn /(d + 1 ) rc. A proof is given here that this construction is optimal, so that

K(n , d) = lcn /(d + 1 ) rc for all n ≡ d (mod 2). This construction and its extensions

have applications to communication theory, especially to construction of signal sets for

optical data links.

__________
* Research supported in part by Alon Fellowship and by The Fund for Basic Research Administered by

the Israel Academy of Sciences.


